Embedded the matplotlib in a GtkViewport.

Still trying to work out the kinks, as only one plot is showing,
and it's not updating with the sliders. I'll get there sooner
or later. Also updated the gitignore, and added images showing
the parametric equations used to calculate the graphs. Neat!
This commit is contained in:
A.M. Rowsell 2021-06-27 15:40:30 -04:00
commit 3e96363771
Signed by: amr
GPG key ID: 0B6E2D8375CF79A9
7 changed files with 217 additions and 29 deletions

View file

@ -1,53 +1,86 @@
# -*- coding: utf-8 -*-
# This Source Code Form is subject to the terms of the Mozilla Public
# License, v. 2.0. If a copy of the MPL was not distributed with this
# file, You can obtain one at http://mozilla.org/MPL/2.0/.
# gtk imports
import gi
gi.require_version('Gtk', '3.0')
from gi.repository import Gtk, Gdk, GObject, GLib
# math/plot imports
from matplotlib.backends.backend_gtk3agg import (
FigureCanvasGTK3Agg as FigureCanvas)
from matplotlib.figure import Figure
import numpy as np
import matplotlib.pyplot as plt
import math
import sys
class spirographs:
def calcEpiX(theta, bigRadius, smallRadius, distance):
return ((bigRadius + smallRadius) * math.cos(theta)) - (distance * math.cos(((bigRadius + smallRadius)/(smallRadius))*theta))
def calcEpiY(theta, bigRadius, smallRadius, distance):
return ((bigRadius + smallRadius) * math.sin(theta)) - (distance * math.sin(((bigRadius + smallRadius)/(smallRadius))*theta))
def calcHypoX(theta, bigRadius, smallRadius, distance):
return ((bigRadius - smallRadius) * math.cos(theta)) + (distance * math.cos(((bigRadius - smallRadius)/(smallRadius))*theta))
def calcHypoY(theta, bigRadius, smallRadius, distance):
return ((bigRadius - smallRadius) * math.sin(theta)) - (distance * math.sin(((bigRadius - smallRadius)/(smallRadius))*theta))
def __init__(self):
self.bigRadius = 12
self.smallRadius = 5
self.distance = 4
self.highestTheta = (np.lcm(smallRadius, bigRadius)/bigRadius) * 2 * math.pi
self.stepSize = highestTheta / 4096
self.highestTheta = (np.lcm(self.smallRadius, self.bigRadius)/self.bigRadius) * 2 * math.pi
self.stepSize = self.highestTheta / 4096
self.recalcPoints()
self.showPlot()
def calcEpiX(self, theta):
return ((self.bigRadius + self.smallRadius) * math.cos(theta)) - (self.distance * math.cos(((self.bigRadius + self.smallRadius)/(self.smallRadius))*theta))
def calcEpiY(self, theta):
return ((self.bigRadius + self.smallRadius) * math.sin(theta)) - (self.distance * math.sin(((self.bigRadius + self.smallRadius)/(self.smallRadius))*theta))
def calcHypoX(self, theta):
return ((self.bigRadius - self.smallRadius) * math.cos(theta)) + (self.distance * math.cos(((self.bigRadius - self.smallRadius)/(self.smallRadius))*theta))
def calcHypoY(self, theta):
return ((self.bigRadius - self.smallRadius) * math.sin(theta)) - (self.distance * math.sin(((self.bigRadius - self.smallRadius)/(self.smallRadius))*theta))
def onDestroy(self, widget):
Gtk.main_quit()
return
def bigRadiusAdjustment_value_changed_cb(self, widget):
self.bigRadius = widget.get_value()
self.recalcPoints()
self.updatePlot()
def smallRadiusAdjustment_value_changed_cb(self, widget):
self.smallRadius = widget.get_value()
self.recalcPoints()
self.updatePlot()
def distanceAdjustment_value_changed_cb(self, widget):
self.distance = widget.get_value()
self.recalcPoints()
self.updatePlot()
def recalcPoints(self):
self.epiX = np.array([calcEpiX(i, bigRadius, smallRadius, distance) for i in np.arange(0, highestTheta, stepSize)])
self.epiY = np.array([calcEpiY(i, bigRadius, smallRadius, distance) for i in np.arange(0, highestTheta, stepSize)])
self.hypoX = np.array([calcHypoX(i, bigRadius, smallRadius, distance) for i in np.arange(0, highestTheta, stepSize)])
self.hypoY = np.array([calcHypoY(i, bigRadius, smallRadius, distance) for i in np.arange(0, highestTheta, stepSize)])
self.epiX = np.array([self.calcEpiX(i) for i in np.arange(0, self.highestTheta, self.stepSize)])
self.epiY = np.array([self.calcEpiY(i) for i in np.arange(0, self.highestTheta, self.stepSize)])
self.hypoX = np.array([self.calcHypoX(i) for i in np.arange(0, self.highestTheta, self.stepSize)])
self.hypoY = np.array([self.calcHypoY(i) for i in np.arange(0, self.highestTheta, self.stepSize)])
def showPlot(self):
plt.subplot(1, 2, 1)
plt.title(f"Epichondroid of {bigRadius}, {smallRadius}, {distance}")
plt.plot(epiX, epiY)
plt.subplot(1, 2, 2)
plt.title(f"Hypochondroid of {bigRadius}, {smallRadius}, {distance}")
plt.plot(hypoX, hypoY)
plt.show()
viewport = builder.get_object('plotViewport')
self.plotFigure = Figure(figsize=(5, 4), dpi=100)
self.subPlot1 = self.plotFigure.add_subplot()
#self.subPlot1.title = f"Epichondroid of {self.bigRadius}, {self.smallRadius}, {self.distance}"
self.subPlot1.plot(self.epiX, self.epiY)
self.subPlot2 = self.plotFigure.add_subplot()
#self.subPlot2.title = f"Hypochondroid of {self.bigRadius}, {self.smallRadius}, {self.distance}"
self.subPlot2.plot(self.hypoX, self.hypoY)
self.canvas = FigureCanvas(self.plotFigure)
self.canvas.set_size_request(800, 600)
viewport.add(self.canvas)
def updatePlot(self):
self.subPlot1.plot(self.epiX, self.epiY)
self.subPlot2.plot(self.hypoX, self.hypoY)
builder = Gtk.Builder()
builder.add_from_file("spirographs.glade")
@ -57,4 +90,3 @@ window = builder.get_object("spWindow")
window.show_all()
Gtk.main()