projectile-simulation/projectile/simulation.py
2023-10-07 23:55:08 +03:00

121 lines
3.5 KiB
Python

import numpy as np
import matplotlib.pyplot as plt
class ProjectileSimulation:
"""
A class used to simulate the motion of a projectile with air resistance.
...
Attributes
----------
g : float
acceleration due to gravity (m/s^2)
C_d : float
drag coefficient
v_init : float
initial velocity (m/s)
theta : float
launch angle (degrees to radians)
h_init : float
launch height (m)
dt : float
time step (s)
t_end : float
total time of simulation (s)
Methods
-------
reset():
Resets the simulation to its initial state.
calculate_acceleration(t, state):
Calculates the acceleration at a given time and state.
update_state(t, state):
Updates the state using the Runge-Kutta method.
run():
Runs the simulation.
plot():
Plots the trajectory of the projectile.
print_range():
Prints the range of the projectile.
"""
def __init__(
self,
g=9.81,
C_d=0.01,
v_init=100,
theta=np.radians(180),
h_init=10,
dt=0.01,
t_end=10,
):
self.g = g
self.C_d = C_d
self.v_init = v_init
self.theta = theta
self.h_init = h_init
self.dt = dt
self.t_end = t_end
self.reset()
def reset(self):
"""Resets the simulation to its initial state."""
self.x = [0]
self.y = [self.h_init]
self.vx = [self.v_init * np.cos(self.theta)]
self.vy = [self.v_init * np.sin(self.theta)]
self.t = [0]
def calculate_acceleration(self, t, state):
"""Calculates the acceleration at a given time and state."""
x, y, vx, vy = state
v = np.sqrt(vx**2 + vy**2)
F_air_x = -self.C_d * v * vx
F_air_y = -self.C_d * v * vy
ax = F_air_x
ay = F_air_y - self.g
return [vx, vy, ax, ay]
def update_state(self, t, state):
"""Updates the state using the Runge-Kutta method."""
k1 = self.calculate_acceleration(t, state)
k2 = self.calculate_acceleration(
t + 0.5 * self.dt, [s + 0.5 * self.dt * k for s, k in zip(state, k1)]
)
k3 = self.calculate_acceleration(
t + 0.5 * self.dt, [s + 0.5 * self.dt * k for s, k in zip(state, k2)]
)
k4 = self.calculate_acceleration(
t + self.dt, [s + self.dt * k for s, k in zip(state, k3)]
)
return [
s + self.dt / 6 * (k1_i + 2 * k2_i + 2 * k3_i + k4_i)
for s, k1_i, k2_i, k3_i, k4_i in zip(state, k1, k2, k3, k4)
]
def run(self):
"""Runs the simulation."""
while self.t[-1] < self.t_end:
state = [self.x[-1], self.y[-1], self.vx[-1], self.vy[-1]]
state = self.update_state(self.t[-1], state)
self.x.append(state[0])
self.y.append(state[1])
self.vx.append(state[2])
self.vy.append(state[3])
self.t.append(self.t[-1] + self.dt)
def plot(self):
"""Plots the trajectory of the projectile."""
plt.plot(self.x, self.y)
plt.xlabel("Horizontal distance (m)")
plt.ylabel("Vertical distance (m)")
plt.title("Projectile Motion with Air Resistance")
plt.show()
def print_range(self):
"""Returns the range of the projectile as a string."""
range_projectile = self.x[-1]
return f"Range of projectile: {range_projectile:.2f} m"